Poster 129
INHERENT OPTICAL PROPERTIES OF THE BALTIC SEA IN COMPARISON TO OTHER SEAS AND OCEANS

The specific IOPs of the Baltic Sea were evaluated and compared to a global Reference Data Set (RDS), covering a wide range of optical provinces. Ternary plots of relative absorption at 442 nm showed CDOM dominance over phytoplankton and non-algal particle absorption (NAP). At 670 nm, the distribution of Baltic measurements was not different from case 1 waters. Chl a retrieval was shown to be improved by red-ratio algorithms. For correct retrieval of CDOM from MERIS data, a different CDOM slope over the Baltic Sea is required. The CDOM absorption slope, SCDOM, was significantly higher in the NW Baltic Sea: 0.018(+/-0.002) compared to 0.016(+/-0.005) for the RDS. Chl a-specific absorption and ad [SPM]*(442) and its spectral slope did not differ significantly. The comparison to the MERIS RMD showed that the SNAP slope was generally much higher (0.011+/-0.003) than assumed in the RMD (0.0072+/-0.00108), and that the SPM-scattering slope was also higher (0.547+/-0.188) vs. 0.4. SPM-specific scattering was much higher (1.016+/-0.326 m²*g⁻¹) vs. 0.578 m²*g⁻¹ in RMD. SPM retrieval could be improved by applying local specific scattering. A novel method was implemented to derive the phase function (PF) from AC9 and VSF-3 data. b_tilda was calculated fitting a Fournier–Forand PF to the normalized VSF data. b_tilda was similar to Petzold, but the PF differed in the backwards direction. Some of the sIOPs showed a bimodal distribution, indicating different water types i.e. coastal vs. open sea. To improve remote sensing retrieval from Baltic Sea data, one should apply different parameterization to these distinct water types.

Susanne Kratzer, Stockholm University, Susanne.Kratzer@su.se, https://orcid.org/0000-0002-0992-7203
Gerald Moore, Bio-Optika, geraldfmoore@cantab.net, https://orcid.org/0000-0001-6170-6646