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ABSTRACT   

We examine the potential for ocean color (OC) retrievals using a neural network (NN) technique 

recently developed by us to make up for the lack of a 678 nm fluorescence band on VIIRS, 

previously available on MODIS and important for Karenia brevis harmful algal bloom (KB HABs) 

retrievals. NN uses VIIRS Remote Sensing Reflectance (Rrs) at 486, 551 and 671 nm to retrieve 

phytoplankton absorption at 443nm, from which both chlorophyll [Chla] concentrations and KB 

HABs can be inferred. NN retrievals are compared with retrievals obtained using other algorithms, 

including Ocean Color Index (OCI/OCx), Semi-analytical algorithm for both complex and open 

ocean waters. VIIRS KB HABs retrievals in the WFS, using NN and other algorithms, are first 

compared against all co-incident in-situ cell count measurements available between 2012-16. Next, 

we compared retrievals obtained for different algorithms using in-situ radiometric Rrs measurements 

against sample measurements, 2017-18, for both the WFS and Atlantic coasts. Next, Retrieval 

statistics showed (i) the important impact of short term (15-20 minutes) temporal variations and 

sample depth considerations in complex bloom waters. These limit satellite retrieval accuracies and 

utility; and (ii) particularly for high chlorophyll bloom waters, better retrieval accuracies were 

obtained with NN followed by OCI/OCx algorithms. Likely rationales: the longer Rrs wavelengths 

used with NN are less vulnerable (i) to atmospheric correction inadequacies than the deeper blue 

wavelengths used with other algorithms, and (ii) to spectral interference by CDOM in more complex 

waters. 
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1. INTRODUCTION  

We have previously described a NN approach [1, 2] for the detection and tracking of KB HABs 

that frequently plague the coasts and beaches of the West Florida Shelf (WFS) using VIIRS satellite 

data. Effective KB HABs detection and tracking approaches are needed for use with the VIIRS 

satellite. These are needed so that HABs monitoring capabilities can be extend to VIIRS, which 

previously relied on MODIS-A imagery [3-9] and specifically on (Rrs678) the remote sensing 

reflectance signal at 678nm, the chlorophyll fluorescence wavelength. (Rrs678) was used with 

MODIS-A for the normalized fluorescence height [2-4] and related Red Band Difference (RBD) [3] 

techniques to effectively help in KB HABs retrievals. However, the current VIIRS satellite, unlike its 

predecessor MODIS-A, does not have a 678 nm channel to detect chlorophyll fluorescence. To 

overcome the lack of a fluorescence channel on VIIRS, the NN approach bypasses the need for 

measurements of chlorophyll fluorescence, allowing us to extend KB HABs satellite monitoring 

capabilities in the WFS to VIIRS. Results showed the efficacy of a NN approach for detecting 

Karenia brevis (KB) harmful algal blooms (HABs) in the West Florida Shelf (WFS). 

2. BACKGROUND  

In this work, OC retrievals using NN are comprehensively compared with those using other 

algorithms, including OCI/OCx and Semi-analytical algorithm for both complex and open ocean 
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waters. First, VIIRS KB HABs retrievals in the WFS, using NN and other algorithms (including 

OCI/OCx, GIOP, QAA and RGCI), are compared against all co-incident in-situ cell count 

measurements available over the 2012-16 period. These data sets cover the available data from the 

start of the VIIRS mission in January 2012 to 2016. In these comparisons, the NN technique was 

found to exhibit the highest retrieval accuracy statistics followed by OCI/OCx algorithms. The 

results also highlighted the impact of temporal variations on achievable retrieval accuracies.  

Next, we obtained retrievals for NN and the other algorithms using in-situ radiometric Rrs 
measurements as inputs, and compared these retrievals against in-situ sample measurements, for 

both the WFS and Atlantic coasts. Here, the use of in-situ Rrs measurements eliminates the impact of 

possibly inadequate atmospheric correction procedures that can affect satellite Rrs retrievals. 

Retrieval statistics confirmed (i) the important impact of short term (15-20 minutes) temporal 

variations and sample depth considerations in complex bloom waters. These limit satellite retrieval 

accuracies and utility; and (ii) particularly for high chlorophyll bloom waters, better retrieval 

accuracies were obtained with NN followed by OCI/OCx algorithms. Likely rationales are that: the 

longer Rrs wavelengths used with NN are less vulnerable (i) to atmospheric correction inadequacies 

than the deeper blue wavelengths used with other algorithms, and (ii) to spectral interference by 

CDOM, expected in more complex coastal waters. Examination of sequential satellite observations 

of the WFS also show the importance of short term temporal variabilities and underline their impact 

on accuracies of retrievals. Finally, field measurements of Sarasota, FL confirm the temporal 

variability of KB HABs and their patchiness in the WFS. 

3. APPROACH  

For development of our NN algorithm [1, 10-13] a synthetic data set of 20,000 IOPs, was 

produced based on the NASA Bio-Optical Marine Algorithm Data set, (NOMAD) [16]. These IOPs, 

whose range and variability is well represented in the literature [17-21] were then used as inputs to a 

four component bio-optical model [12, 20, 21] which in conjunction with a HydroLight based [22], 

parameterized forward model, described in Lee 2002 [20] produced 20,000 sets of Rrs values at 486, 

551 and 671 nm (for VIIRS) and at 488, 555 and 667 nm for MODIS. The NN was trained on 

10,000 of these values and tested on the 10,000 remaining subset, as well as on field data to solve the 

inverse problem [23] of retrieving physical variables, including aph443, from Rrs values at 486, 551 

and 671 nm, and at 488, 555 and 667 nm. The algorithm is a standard multiband NN inversion 

algorithm that takes Rrs input at 486, 551 & 671 nm, values used at a longer λ which are not greatly 

impacted by atmospheric correction. Output of (aph, adg, adm & bbp) all at 443 which at the peak of 

aph and thus exhibit most variation. Detailed descriptions of the NN are given in Refs. [10-13], and 

[1] gives the necessary parameters for implementation of the NN with a MATLAB tool for obtaining 

satellite retrievals. 

In the following sections, we focus on chlorophyll-a concentrations and KB HABs retrievals 

matched against coincident, or near coincident, in-situ measurements in the WFS, using the NN 

approach and other available direct ocean color retrieval algorithms: (i) Ocean Color indexes 

(OCI/OCx) product [31, 32]. (ii) Generalized Inherent Optical Property (GIOP) model [26-28] (iii) 

QAA - Quasi-Analytical Algorithm (QAA) [20, 29, 30] (iv) Red Green Chlorophyll Index (RGCI) 

[25]. We also examine sources of retrieval’s variabilities in the field measurements.  

4. RESULTS  

3.1 Satellite retrievals and in-situ measurements comparisons for [Chla] and KB HABs. 

Chlorophyll-a and KB HABs retrievals for VIIRS overpass were compared against in-situ 

measurements using NN and other algorithms. The ultimate test for the viability of KB HABs 

satellite retrieval techniques is their ability to match retrieved values with concurrent in situ 

measurements. However, it is difficult on any one day to find sufficient matchups between satellite 

observations and concurrent, or near concurrent in situ measurements to obtain statistically 

meaningful results. We therefore extended the study period to look at all available WFS match-ups, 



 

 
 

 

 

 

Fig. 1, between VIIRS measurements and in situ data at concurrent dates and over the 2012–2016 

period for which there was available VIIRS data. We then looked for match ups where the overlap 

time windows between satellite observations and in-situ measurements were 15 minutes and 100 

minutes. The 100 minutes time window conforms to the approximate time between consecutive 

VIIRS overpasses, and therefore of consecutively retrieved images. These can therefore provide 

evidence of the temporal variations, observed with KB HAB blooms. The shorter 15-minute time 

window was selected after an investigation that found 15 minutes to be the shortest time window, 

which at the same time provided enough match up data points for meaningful statistical analysis. 

This approach is borne out by the results which show much better match ups for the 15 minutes 

window. This has important implications regarding the validity of satellite observations of KB 

HABs. 

When comparisons were being made between retrievals using NN, GIOP, OCI/OCx, QAA and 

RGCI algorithms, it was found that there were 18 match-ups of available in-situ measurements that 

satisfy the match-up conditions for satellite observations within a 15 minutes overlap time window. 

The additional conditions stipulated for match-up were that pixel centers were 0.3 miles or less from 

the in-situ measurement location. This is an empirical approach to ensure that pixel values could be 

reasonably assumed to reflect the related in-situ measurements and hence reduce potential impact of 

patchiness [33] within the pixel (0.7 Km2 and 1.0 Km2 corresponds to nadir observation for VIIRS 

and MODIS respectively). Pixels were also excluded from the match-up comparisons if they had 

been flagged for any of the following: land, clouds, failure in atmospheric correction, stray light, bad 

navigation quality, both high and moderate glint, negative Rayleigh corrected radiance, viewing 

angle greater than 60°, and solar zenith larger than 70°, as well as any pixels which had water 

leaving radiance spectra with negative values in any one wavelengths. Cell counts sample 

measurements also had to be at less than 1 meter depth, and at concentrations ≥ 104 cells·L−1. It 

should be noted that [Chla] of 1 µg·L−1 is taken as ~105 cells·L−1 [34]. The in-situ cell count data 

was obtained from the Florida Fish and Wildlife Conservation Commission’s Fish and Wildlife 

Research Institute (FWC-FWRI). The search for match-up between VIIRS satellite and in-situ 

observations on the same day and within a 100 minute window of the overpass time showed 93 cases 

which satisfied the match-up conditions as specified above. To determine the coefficient of 

determination, R2, the orthogonal linear regression approach (OR) was used where errors are 

assumed to exist for both variables. The error (ɛ) is calculated as the sum of orthogonal distances. 

OR estimates of  on  will minimize the orthogonal distance from the observed data points to the 

regression line [35]. It was found there were 68 valid observations within the 100-minute window 

between overpass time and the in-situ measurements. The 68 valid observations were reduced to 18 

match-ups when the observations window is restricted to 15 minutes, during which the impact of 

temporal variations is reduced. 

Table. 1 shows the results between retrieved [Chla] using the NN, GIOP, OCI/OCx, QAA and 

RGCI algorithms and the in-situ KB cell count measurements for the 100 minutes and 15 minute 

match up time windows are shown. As can be seen, correlations and errors greatly improve for the 

15-minute window, compared to the 100-minute window observations. These results, illustrate the 

impact of observation time windows on retrieval accuracies for all algorithms. It also supports the 

conclusion, that, at least for these preliminary and somewhat limited data sets, the NN retrievals 

exhibit the high performances against the in-situ measurements, for both the longer (100-minute) 

and, more importantly, the shorter (15-minute) overlap time windows. This was observed both in 

terms of higher correlations and in terms of lower errors against the in-situ measurements. 

3.2 Satellite temporal changes on consecutive satellite images  

We examine temporal variability here through the use of consecutive satellite images available 

on VIIRS and MODIS satellites. From the results in 3.1 above, it was seen that reducing the time 

window between satellite and in situ observations can generally significantly increase the accuracy 



 

 
 

 

 

 

between VIIRS retrieved [Chla] and in-situ measured KB cell counts. These changes can be quite 

rapid [36]. To explore the potential for detecting HAB bloom changes over relatively short periods 

from overlapping consecutive satellite overpasses, we have also examined changes in three 

consecutive overlapping satellite images in Fig. 2. Two of these are from VIIRS, 96 minutes apart 

and an intermediate one is from MODIS-A, 70 minutes after the first VIIRS image. 

We examine retrievals of OCI/OCx [Chla] for these three consecutive granules, Fig. 2a, b and c 

show the retrieved [Chla] products from these consecutive VIIRS–MODIS–VIIRS images for the 

WFS near Sarasota FL on 11/3/2014. The bloom, as delineated by the [Chla] color contour in the 

zoomed images, appears, qualitatively, to increase in concentration and expand in the southwest 

direction over the 96-minute interval between the consecutive VIIRS–MODIS–VIIRS overlaps.  

These changes are reflected in the associated zoomed pixel images (Fig. 2) and appear to provide 

qualitative visual indications of expansion of the bloom and its increasing [Chla] concentration in 

the southwest direction. This appears broadly consistent with the directions of wind and likely 

current, though there is no specific or quantitative evidence of linkage. Furthermore, no movements 

of [Chla] distribution patterns are discerned that would indicate transport. Nor is there evidence for 

identifying specific causes for the changes observed, e.g. whether these are due to bloom vertical 

migration, upwelling/downwelling effects or otherwise. Note bloom free waters (zoomed blue 

regions in Fig.2, are consistently the same in all 3 images). Consistent bloom areas with no change 

were also found near the zoomed increasing [Chla] concentration regions in Fig. 2 (not shown here).  

In conclusion, for this section on consecutive satellite images, it is recognized that additional 

studies that include comparisons from consecutive VIIRS retrievals of Rrs values, as well as 

comparisons of [Chla] retrievals against simultaneous in-situ measurements, would be needed to 

clarify the nature and magnitude of the changes being observed. However, given the difficulty of 

carrying out comprehensive calibration measurements of this type, we believe that it is reasonable to 

conclude that while consecutive overlapping satellite images can provide some evidence of temporal 

changes in KB HABs concentration in the WFS, they are unlikely to provide accurate or reliably 

useful information on the magnitudes involved. 

It should also be noted, that while consecutive overlapping images appear to show temporal 

changes, there is insufficient evidence from them to attribute the relative contributions of drift, 

patchiness, upwelling/down welling or a combination of any of these to the causes of the changes. 

The next section, 3.6 presents the results of recent field measurements of KB HABs in the WFS, 

which much more solidly confirm KB HABs temporal variabilities as well as patchiness. They also 

support conclusions that the significantly improved retrieval accuracies that are obtained with shorter 

overlap time windows between satellite retrievals and in-situ measurements (section 3.3 above) 

reflect the impact of temporal variabilities.  

3.3 Temporal, intra-pixel and depth effects on field measurements retrievals 

The evidence for temporal changes, intra-pixel, depth variations and patchiness associated with 

blooms in the WFS is further supported more definitively by field measurements made in 

conjunction with Mote Marine Laboratories on 2017 and 2018 off Lido Key, near Sarasota FL. A 

transect of measurements were made. Many of these measurements were made at stations subpixel 

distances apart (generally 300 meters) on an outward leg, and were then repeated for the same 

stations as closely as possible on a return leg. Radiometers and sample measurements were taken at 

different depth 0.1, 0.5, and 1 meter. Samples cell concentrations obtained by analysis at Mote 

Marine Laboratories.  

Fig. 3 shows field measured variabilities of KB cell counts due to temporal, depth, and intra-pixel 

effects. KB cell counts were converted to equiv. chlorophyll-a values in the figure (1 µg·L−1 ≈105 

cells·L−1 [34]). The measured variabilities of the chlorophyll-a values varied from ~1 to 30%, in 

average. It can be seen, in Fig. 3, that the coefficient of variation (CV) in chlorophyll-a values at the 

same station generally increase with longer time intervals (between outward and return legs). Thus, 



 

 
 

 

 

 

the greatest change is for Station 1 from 7.52 x 106 cells L-1 to 1.552 x 106 cells L-1 over the 120-

minute time interval between the two measurements with a CV=82%. It should be noted, that, as 

might be expected with these high cell counts, the latter showed an excellent match with 

simultaneous co-located HPLC [Chla] measurements. For the shortest time between measurements, 

station 2 the change is 0.952 x 106 cells L-1 to 0.690 x 106 cells L-1 over the 21-minute interval 

between measurements with a CV=13%.  (It should also be noted that there is also a slight 

discrepancy in station positions recorded due to drift from measurement start (with GPS initial co-

location) to completion and recording. Sampling depths can also result in considerable variability in 

measured values. The variation for KB cell counts values from just below to 0.5 and 1 meters varied 

in the ranges of 7-32% and 2-24% respectively for 11 stations. For instance, a typical set of 

measurements of KB HABs in the WFS in a 2018 cruise, were for 0.1, 0.5 and 1 meter sampling 

depths, cell counts/liter were 4.4 x 106, 5.1 x 106 and 2.4 x 106. 

     These results illustrate both the intra pixel variations that can typically occur (as well as inter 

pixel variations) and confirm the temporal variations that can be expected. The relative contributions 

of drift or upwelling/downwelling to the results are not examined here. In general, the consecutive 

satellite images and the field measurements observations lend support to our underlying thesis that 

the significantly increased bloom retrieval accuracy that occurs by shortening of the overlap time 

window between observation and in-situ measurement match-ups from 100 minutes to 15 minutes, is 

due to temporal changes in the observed bloom. They also serve to underline that magnitudes 

derived from satellite observations may only be valid for brief periods. To deal with these 

uncertainties, we are currently examining temporal and spatial averaging possibilities.  

3.4 Improving retrieval’s performance for satellite and in-situ algorithms. 

     Better performance of NN VIIRS retrievals against in-situ measurements may be due to relative 

invulnerability of longer wavelengths used (481, 551, 671 nm) to atmospheric correction 

inadequacies impacting shorter wavelengths used in other algorithms, particularly for closer in-shore 

waters. To eliminate atmospheric correction inadequacy concerns, additional credence by examining 

retrieval of NN and OCI/OCx algorithms using two different blue bands as inputs (443 & 486 nms). 

Retrieval comparisons were made – for a variety of waters: Open Ocean (Atlantic), and complex 

coastal KB bloom waters. The non-bloom in-situ and satellite Open Ocean measurements are from 

the NOAA VIIRS Calibration and Validation cruises [37-39] over the 2014-16 period. The coastal 

bloom in-situ measurements are from our 2017 and 2018 WFS field campaigns. Both datasets are 

included in the comparisons. In both cases in-situ and satellite Rrs values and measured samples 

were used. 

     As can be seen, in Fig. 4 the NN and OCI/OCx retrievals give higher retrieval accuracies, with 

inputs 486 nm instead of 443 nm for both in-situ and satellite retrievals. Again, this tends to confirm 

that the longer wavelengths used as inputs to the retrieval algorithms are advantageous, whether due 

to lesser vulnerability to inadequate atmospheric correction, and/or to lesser spectral interference 

from CDOM, particularly in complex waters.  

     Retrieval performance for both algorithms is also examined by comparing their retrieval statistics 

at varying distances from the shoreline (color code in figure 4 for the NN). The coastal water regions 

located 2 to 16 miles from shoreline, the NN algorithm exhibited the lowest retrieval errors and 

RMSE of ~ 1.3. For the Open Ocean regions both algorithms exhibited similar errors with RMSE ~ 

1.4. The regression lines seem to improve in OCI/OCx for the low chlorophyll-a retrieved values and 

in NN for the high chlorophyll-a retrieved values. In general, for the more complex WFS waters with 

KB HABs, the NN algorithm performs with higher accuracy, closely followed by OCI/OCx. This 

would tend to support the notion that higher accuracies of NN retrievals may be at least partially due 

to the use of longer Rrs input wavelengths for NN, than the deeper blue wavelengths used with other 

algorithms. Thereby lessening the impact that inadequate atmospheric corrections associated with 



 

 
 

 

 

 

deeper blue wavelengths will affect retrieval accuracies, as well as possible reduced spectral 

interference by the existence CDOM (expected in more complex waters). 

 

5. DISCUSSION AND CONCLUSIONS 

In the work reported here, NN algorithms using Rrs values from the 486, 551 and 671 nm VIIRS 

bands are used to retrieve [Chla] values and KB HABs (Example of the NN KB HABs retrieval 

process is illustrated in Fig. 5). Retrievals of KB HABs in the WFS from VIIRS overpasses, using 

NN were then compared with other retrievals using other algorithms including OCI/OCx, GIOP, 

QAA and RGCI against in-situ sample measurements. These comparisons showed that for the 

available VIIRS observations, the NN technique appeared to offer good potential for effective 

retrievals of KB HABs cell counts in the WFS, and analysis of retrieval statistics showed the NN 

technique exhibit higher accuracy, followed by OCI/OCx algorithms. However, more comparisons 

also showed that when the window between in situ observations and satellite overpass measurements 

was reduced from 100 minutes to 15 minutes, retrieval accuracies greatly improved, with increased 

correlations and reduced errors. This is now understood to be due to the temporal change in the KB 

HABs scene being observed. That these temporal changes can occur fairly rapidly, was confirmed 

unambitiously by retrievals of KB HABs images in the WFS from consecutive VIIRS –MODIS-

VIIRS overpasses, as well as field campaigns of in-situ KB HABs measurements in the WFS. 

The higher retrieval accuracies of KB HABs obtained with NN in the WFS, may be explained by 

the fact that the NN retrieval algorithm uses longer wavelengths than the deep blue wavelengths 

used by other retrieval algorithms. The longer wavelengths used are less vulnerable to atmospheric 

correction inadequacies, as well as to spectral interference from CDOM, both of which are factors 

likely to be present in the complex KB HABs coastal waters of the WFS. It is also important to note 

that the higher accuracies of NN retrievals may also be inherent because of the training used in the 

evolution of the NN algorithm. This training was based on a very wide and comprehensive variety of 

global observations, representing ranges and distributions that are typical for both coastal and 

oceanic water conditions. To shed more light on these questions, retrieval comparisons were carried 

out in the complex waters of the WFS and in open ocean waters on the Atlantic coasts.  Then, NN 

and OCI/OCx retrieval algorithms was reinforced by examination of retrievals using both algorithms 

with input at 443 or 486 nm, which are available in the NASA products.  These comparisons were 

carried out with one set using the in-situ radiometric measurements as inputs, while the other 

examined satellite retrievals. Again, both sets of retrievals were compared against the in-situ sample 

measurements. For each set the both algorithms using 486 nm as inputs performed better than the 

one using 443 nm. Analysis of retrieval statistics again showed higher performance, when using the 

longer wavelength, especially in complex coastal waters. 

     In general, it can be concluded that NN retrievals are effective for retrieving KB HABs in 

complex coastal waters such as the WFS. Analysis of retrieval statistics against sample 

measurements show NN performs better in complex coastal waters than other algorithms. The use of 

longer Rrs input wavelengths may make NN them less vulnerable to atmospheric correction 

inadequacies and CDOM spectral interference than algorithms, which use deep blue input 

wavelengths which generally impact retrievals in complex coastal waters. It is important to note that 

temporal variabilities associated with KB HABs impact and limit the utility of satellite retrievals, and 

suggest the use of other observation platforms, possibly including UAVs. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

KB Karenia brevis 

HABs Harmful algal blooms 

WFS West Florida Shelf 

VIIRS Visible Infrared Imaging Radiometer Suite 

MODIS-

A 
Moderate Resolution Imaging Spectroradiometer Aqua 

MERIS MEdium Resolution Imaging Spectrometer 

aph Absorption coefficient due to phytoplankton particulates (m−1) 

adg 
Absorption coefficient due to non-phytoplankton particulates and dissolved substances,  

adm + ag (m
−1) 

adm Absorption coefficient due to non-phytoplankton particulates (m−1) 

aw: Absorption coefficient due to water (m−1) 

at Total absorption coefficient, aph + adm + ag + aw (m−1) 

bbp Backscattering coefficient due to particulates (m−1) 

bbw Backscattering coefficient due to water (m−1) 

bb Total backscattering coefficient, bbp + bbw (m−1) 

[Chla] Chlorophyll-a concentration (µg·L−1) 

CDOM Color dissolved organic matter (ppm) 

NAP Non-phytoplankton particulate concentration (g·m−3) 

AOP Apparent optical properties 

IOP Inherent Optical properties 

RT Radiative transfer 

Rrs Above-surface remote-sensing reflectance (sr−1) 

nLw Normalized water leaving radiance (W·m−2·µm·sr−1) 

MLPNN Multi Layer perceptron neural network 

NN Neural network 

NN 

[Chla] 
NN deriving [Chla] from Rrs as inputs 

NOMAD NASA bio-Optical Marine Algorithm Data set [22]. 

nFLH Normalized fluorescence height Algorithm (W·m−2·µm·sr−1) [55].  

RBD Red Band Difference Algorithm (W·m−2·µm·sr−1). [5,6] 

OC Ocean Color 

OC3 Chlorophyll-a concentration (µg·L−1) derived using VIIRS and MODIS algorithm [40–42]. 

OCI Chlorophyll-a concentration (µg·L−1) derived using VIIRS and MODIS algorithm [40]. 

RGCI Red Green chlorophyll-a Index 

GIOP Generalized Inherent Optical Property 

QAA Quasi-Analytical Algorithm version 

R2 Coefficient of determination. Orthogonal linear regression approach was used. 

ɛ Error – sum of orthogonal distances.   

N Number of points 

µ Mean value 

HPLC High Performance Liquid Chromatography 

MOTE Mote Marine Laboratory 
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Figure 1 Shows development of the NN algorithm. (a) Shows the bio-Optical model and 

forward model simulations; (b) Shows the architecture of the NN, one-hidden layer 

multilayer perceptron (MLP), trained with 10,000 set of Rrs and related IOPs.  

      A synthetic data set of 20,000 IOPs, was produced based on the NASA Bio-Optical 

Marine Algorithm Data set, [16]. These IOPs, whose range and variability is well 

represented in the literature [17-21] were then used as inputs to a four component bio-

optical model [12, 20, 21] which in conjunction with a HydroLight based [22], 

parameterized forward model, described in Lee 2002 [20] produced 20,000 sets of Rrs 

values at 486, 551 and 671 nm (for VIIRS) and at 488, 555 and 667 nm for MODIS. The 

NN was trained on 10,000 of these values and tested on the 10,000 remaining subset, as 

well as on field data to solve the inverse problem [23] of retrieving ocean color physical 

parameters, including aph443, ag and adm as well as bbp,, from Rrs values. The NN algorithm 

uses Rrs input at 486, 551 & 671 nm, values used at a longer λ which are not greatly 

impacted by atmospheric correction. Output of (aph, ads, ad & bob) all at 443 which at the 

peak of ape and thus exhibit most variation. 

 

  

 

 

 



 

 
 

 

 

 

 

 

 

 

 
 

Satellite retrieval’s statistics of comparison 

y-axis 

Retrieved 

(µg·L−1) 

x-axis 

Measured 

(cells L-1) 

 

R2 

 

ɛ 

 

Slope & Intercept 

 

N 

NN  

VIIRS vs. in-situ  

100 minutes window 

0.42 5.01 0.52 2.04 68 

OCI/OCx 0.34 5.24 0.43 1.54 68 

GIOP 0.37 12.64 1.60 7.28 68 

RGCI 0.19 15.46 1.14 5.39 68 

QAAv5 0.23 15.13 1.31 6.09 68 

NN  

VIIRS vs. in-situ  

15 minutes window 

0.79 0.42 0.47 1.83 18 

OCI/OCx 0.55 0.72 0.34 1.13 18 

GIOP 0.45 3.57 1.20 5.25 18 

RGCI 0.50 2.28 0.75 3.55 18 

QAAv5 0.34 3.82 0.90 3.88 18 

 

Table 1 Shows the important impact of short term (15-20 minutes) temporal variations and sample 

depth considerations in complex bloom waters retrievals. Results are shown for six ocean color 

retrieval algorithms.  

 

Parameters: 

N: Number of data points 

R2: coefficient of determination using the orthogonal linear regression approach (OR). 

ε: sum of orthogonal distances from the observed data points to the regression line. 
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Figure 2 a, b and c showing 100 minutes changes in bloom for consecutive satellite images of region 

1, retrieved chlorophyll-a imagery on Nov. 14th, 2014. Wind direction information obtained from the 

National Data Buoy Center website for the C-MAN stations at Venice, FL (Station VENF1). 

(27°4'21" N 82°27'10" W) gives area wind direction information. Approximate wind and assumed 

current information is shown overlaid in the retrieval images: Fig. 7. 
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Figure 3 Shows chlorophyll-a measurements variabilities in coastal bloom waters (chlorophyll-a 

values shown here are values equiv. to in-situ measured KB blooms cell counts). Results show 

variations ranged from 1 to 30% in average, due to temporal, intra-pixel and depth changes.  
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Figure 4 Shows how the wavelength choice can impact precision and accuracy of chlorophyll-a 

retrievals. Color bar shows retrieved [Chla] statistics at varying distance from the shoreline. 

 

NN Chlorophyll-a retrievals from satellite & in-situ match-ups are compared for the same number of 

points when using two different blue bands (Rrs 443 & 486 nms) as inputs. Results shows improved 

regression performance in both in-situ and satellite retrieval when using Rrs 486 input instead of 443. 

The use of longer Rrs input wavelengths (486nm) make NN retrievals less vulnerable to atmospheric 

correction inadequacies and CDOM spectral interference than algorithms, which use deep blue input 

wavelengths (443nm) which generally impact retrievals in complex coastal waters. Similar result is 

achieved when using the OCI/OCx algorithms. The regression performances of both algorithms are 

tabulated in the next page for comparison. 



 

 
 

 

 

 

N: Number of data points

R2: Coef. Of determination

ε : Error, sum of orthogonal distances. 

RMSE: Root mean square error

Int.: Intercept

PD: percentage difference.

Reduced regression performance between in-situ and

satellite chlorophyll-a retrievals when using Rrs 443.

Increased regression performance between in-situ and 

satellite chlorophyll-a retrievals when using Rrs 486.

Improved regression performance for both in-situ and satellite

chlorophyll-a retrievals when using Rrs 486 instead of 443.
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Figure 5 Example of Karenia brevis harmful algal blooms (KB HABs) retrieval and their corresponding 

true color imagery from VIIRS satellite in the WFS region using the NN approach.  

 

In this image, NN algorithms using Rrs values from the 486, 551 and 671 nm VIIRS bands are used 

to retrieve an image of aph443 values in the WFS. Then, additional limiting constraints are applied, in 

two filter processes, requiring aph443 to be above a limiting value, and backscatter and hence Rrs 551 

to be below a limiting value, thus eliminating from the retrieved aph443  image all pixels which are 

not compatible with the existence of KB HABs (shown on gray color). The residual image then shows 

only retrieved aph443 values and their equivalent [Chla] values that are consistent with the existence 

of KB HABs. Note that the retrieved [Chla] image (shown on the right of this image) is overlaid with 

KB cell counts measurements. The zoomed result on the top highlights the retrieval accuracy where 

successful retrieval of non-bloom pixel surrounded by high bloom pixels achieved. The impact of 

sub-pixel variability is also evident on the zoomed top right image where adjacent bloom and non-

bloom within the pixel are averaged to show bloom pixels. 
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