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Abstract 

In optically deep waters, remote sensing reflectance (Rrs) is expressed as the ratio of the 

backscattering coefficient (bb) and the sum of absorption and backscattering coefficients 

(a+bb) with a multiplicative model parameter “g”. Parameter “g” itself is expressed as function 

of g0, g1 and u (= bb/ (a+bb)). For oceanic case 1 waters and coastal waters, different constant 

values for g0 and g1 are proposed owing to varying scattering conditions and particle phase 

function. In this study, we used g0 and g1 as variables (instead of constants) in the semi-

analytical model to retrieve marine Bulk Inherent Optical Properties (IOPs – a and bb) from 

Rrs. To assess the performance of proposed increase in variables, Rrs values at six SeaWiFS 

wavelengths 410, 443, 490, 510, 550 and 670 nm are taken from NASA bio-Optical Marine 

Algorithm Dataset, with Particle Swarm Optimization (PSO) as the optimization technique for 

inversion of Rrs. Results show that the Multiplicative Bias values obtained with g0 and g1 

considered as variables for Bulk IOPs (a – 0.79, bb – 1.27) are better than standard semi-

analytical model (a – 0.77, bb – 1.32). We observed similar results using another statistic: Mean 

Absolute Error. We propose to include g_0 and g_1 as variables for retrieval of IOPs from rrs 

using semi-analytical models. 
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1. INTRODUCTION 

Ocean color is measured by subsurface remote sensing reflectance (rrs) [1][2] , defined as a 

ratio of upwelling radiance [𝐿𝑢(0 −)] to downwelling irradiance [𝐸𝑑(0 −)] at zero depth: 

𝑟𝑟𝑠 =
𝐿𝑢(0−)

𝐸𝑑(0−)
               (1) 

The relation between rrs and in – water constituents can be used to estimate water properties 

from remotely sensed data of rrs. Various numerical simulation tools such as Monte Carlo 

method [3], [4] or the Hydrolight model [5] are used to develop relations between rrs and 

Inherent Optical Properties (IOPs) of water. But, numerical simulations alone cannot 

completely describe the ocean color and water properties relations. Owing to some of the 

limitations of the existing remote sensing reflectance models, semi analytical models with 

molecular and particle scattering functions are developed [2]. In this study, we propose an 

improved semi-analytical model to overcome some of the limitations and compare with 

standard Semi-analytical model. The order of the paper is as follows: Section – II will briefly 

describe the general semi-analytical model used for generation of model spectra and the 

proposed modifications. Section – III will give information about the standard dataset used for 

the study. Section – IV will mention about the optimization routine used for finding optimal 

values of IOPs in rrs inversion. Section – V will discuss the results and discussion from the 

study. 
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2. FORWARD SEMI-ANALYTICAL MODEL  

In this section, we briefly mention about the generally used semi-analytical model used for 

generation of model spectra. Remote sensing reflectance above the surface (Rrs, sr-1), is defined 

as ratio of water – leaving radiance to downwelling irradiance just above the surface for 

optically deep waters and is measured by sensors. To convert Rrs to subsurface remote sensing 

reflectance (𝑟𝑟𝑠(𝜆), 𝑠𝑟−1) for a nadir – viewing angle, the following relation given by [6] is 

used 

𝑟𝑟𝑠(𝜆) =
𝑅𝑟𝑠(𝜆)

0.52+1.7 𝑅𝑟𝑠(𝜆)
          (2) 

rrs is modelled as a function of absorption and backscattering coefficients as in [3]. 

𝑟𝑟𝑠(𝜆) = 𝑔0𝑢(𝜆) + 𝑔1[𝑢(𝜆)]2          (3) 

With  

𝑢 =
𝑏𝑏

𝑎+𝑏𝑏
            (4) 

For nadir – viewed 𝑟𝑟𝑠 and oceanic case 1 waters, [3] proposed the values of 𝑔0 ≈ 0.0949 and 

𝑔1 ≈ 0.0794. Here, a is the total absorption coefficient expressed as sum of absorption 

coefficients for pure water, phytoplankton pigments and gelbstoff. 𝑏𝑏is the total backscattering 

coefficient expressed as sum of scattering coefficients for pure seawater and particles. 𝜆 is the 

wavelength. The modelling of coefficients a and 𝑏𝑏 is mentioned below briefly  

𝑎(𝜆) = 𝑎𝑤(𝜆) + 𝑎𝜙(𝜆) + 𝑎𝑔(𝜆)          (5) 

𝑏𝑏(𝜆) = 𝑏𝑏𝑤(𝜆) + 𝑏𝑏𝑝(𝜆)            (6) 

For a given temperature and salinity, 𝑎𝑤(𝜆) and 𝑏𝑏𝑤(𝜆) are laboratory measured absorption 

and backscattering coefficients of pure sea water taken as constants in the semi-analytical 

model. The 𝑎𝑤(𝜆) are taken from [7] and 𝑏𝑏𝑤(𝜆) values from [8]. 𝑎𝜙(𝜆) is phytoplankton 

absorption is based on model given by [9] 

𝑎𝜙(𝜆) = (𝑎0(𝜆) + 𝑎1(𝜆) 𝑙𝑛 (𝑎𝜙(443)) ) 𝑎𝜙(443)      (7) 

The values of 𝑎0(𝜆) and 𝑎1(𝜆) are mentioned in [9]. 𝑎𝑔(𝜆) is absorption coefficient of gelbstoff 

and detritus expressed as in [10]–[13].  

𝑎𝑔(𝜆) = 𝑎𝑔(443) 𝑒𝑥𝑝[−𝑆 (𝜆 − 443)]                      (8) 

S is a empirically determined spectral slope reported in the range of 0.011 – 0.021 nm-1. A 

value of 0.0206 nm-1 is used as a representative average as in [14]. 𝑎𝑔 represents sum of 

gelbstoff and detritus absorption spectra.   

 𝑏𝑏𝑝(𝜆) is backscattering due to particulate material which is modelled as a hyperbolic 

function of wavelength as in [6]. The hyperbolic slope is determined empirically based on ratio 

of 𝑟𝑟𝑠(443) and 𝑟𝑟𝑠(555).  



𝑏𝑏𝑝(𝜆) = 𝑏𝑏𝑝(555) ∗ [
555

𝜆
]

𝑌

            (9)  

𝑌 = 2.2 [1 − 1.2 𝑒𝑥𝑝 (−0.9
𝑟𝑟𝑠(443)

𝑟𝑟𝑠(555)
)]                            (10) 

With above spectral models using empirical constants, rrs can be described as a function below 

and is mentioned hereafter as SAA3v (Semi Analytical Model with 3 variables) with 

wavelength consideration. 

𝑟𝑟𝑠 = 𝑓𝑢𝑛 (𝑎𝜙, 𝑎𝑑𝑔, 𝑏𝑏𝑝, 𝜆)                    (11) 

Parameter “g” and its variations: 

In Eq. 3 and 4, the values of 𝑔0 ≈ 0.0949 and 𝑔1 ≈ 0.0794 were originally obtained by least 

squares regression of Monte Carlo simulated data for Oceanic Case 1 waters by [3]. Later, for 

higher scattering coastal waters, [13] proposed values of 𝑔0 ≈ 0.084 and 𝑔1 ≈ 0.17. In 

development of QAA (Quasi – analytical algorithm), averaged values of 𝑔0 = 0.0895 and 

𝑔1 = 0.1247 are used by [6] with an aim to develop a model suitable for both coastal and open 

– ocean waters. However, the values of g0 and g1 may vary with particle phase function and 

not known remotely [6]. 

As mentioned in [2], the Eq.n. 3 has some limitations which are 1. The values provided 

by [3] for g0 and g1 are for nadir viewing sensors and are not applicable to sensors measuring 

water color away from nadir to avoid sun glint. 2. Eq.n 3 will give the same g value for different 

a and 𝑏𝑏 values as long as they result in same 𝑏𝑏/(𝑎 + 𝑏𝑏) value. A semi-analytical 𝑟𝑟𝑠 model 

is developed by [2] to overcome some of the above limitations, by partitioning parameter “g” 

to include effects of molecular and particle scattering to 𝑟𝑟𝑠 as below 

𝑔 = 𝑔𝑤
𝑏𝑏𝑤

𝑏𝑏
+ 𝑔𝑝

𝑏𝑏𝑝

𝑏𝑏
                                 (12) 

𝑔𝑝 = 𝐺0 [1 − 𝐺1 𝑒𝑥𝑝 (−𝐺2
𝑏𝑏𝑝

𝑎+𝑏𝑏
) ]              (13) 

Here 𝑔𝑤 and  𝑔𝑝 are two independent model parameters for molecular and particle 

scattering. 𝑏𝑏𝑤 and 𝑏𝑏𝑝 are molecular and particle contribution as in [15]. The values 𝐺0, 𝐺1 and 

𝐺2 for various viewing angles and a particle phase function are calculated in [2].  

 In this study, we propose to treat 𝑔0 and 𝑔1 as variables in Eq.ns 3 and 4 with their 

variation in between oceanic case 1 and coastal waters i.e. 𝑔0 will vary from 0.084 – 0.0949 

and 𝑔1 from 0.0794 – 0.17. The standard semi-analytical model described in Section - II with 

𝑔0 and 𝑔1 as variables is hereby mentioned as SAA5v (Semi analytical model with 5 variables). 

For every 𝑟𝑟𝑠, different 𝑔0 and 𝑔1 will be generated even if the ratio of 𝑏𝑏/(𝑎 + 𝑏𝑏) is same, 

thus overcoming some of the limitations mentioned before. To understand the performance of 

the proposed inclusion of variables, we compare the proposed SAA5v with SAA3v with values 

given for nadir viewing sensor. 

3. STANDARD DATASETS 

To validate the proposed SAA5v, we used the NASA Bio – Optical Marine Algorithm Data set 

(NOMAD [16]), available from SeaBASS website (http://seabass.gsfc.nasa.gov) which 

consists of field measurements made around the globe. NOMAD dataset provides Rrs at bands 

of 411,443,489,510,555 and 670 nm with corresponding optical properties. We adjusted the 

http://seabass.gsfc.nasa.gov/


absorption and backscattering coefficients of pure seawater (available at 550nm) while using 

NOMAD dataset. NOMAD data with rrs at first 6 SeaWiFS wavelengths and corresponding 

𝑎𝜙, 𝑎𝑑𝑔, 𝑏𝑏𝑝 are extracted. Hereafter, called as NOMAD6w. Table 1 gives number of spectra 

available for individual and bulk IOPs. 

4. OPTIMIZATION TECHNIQUE 

To find the optimal values for 𝑎𝜙, 𝑎𝑑𝑔, 𝑏𝑏𝑝, 𝑔0 and 𝑔1 in SAA5v and SAA3v, we followed 

spectral optimization technique for inversion of 𝑟𝑟𝑠 spectra generated using SAA5v and 

SAA3v. Various computational methods are used to obtain optimized values of variables in 

Semi-analytical models. Local optimization techniques like Levenberg – Marquardt [17], [18],  

Nelder – Mead [19] and global optimization techniques like Genetic algorithm (GA) [20], 

Particle Swarm Optimization (PSO) [21] and Simulated Annealing [22] are used as 

optimization routines. PSO  outperformed GA in terms of both processing time and better 

retrievals in a study to retrieve IOPs from deep waters [21].  Hence, we used, Particle Swarm 

Optimization which as a global optimization technique is capable to overcome local minimums 

and achieve global optimization of an objective function. It is based on behaviour of swarming 

or flocking animals, such as birds or fish. More information about PSO can be found in ([23]–

[25]). The values used as boundary constraints for different variables and for different datasets 

are mentioned in  

Table 2. 

 For optimization, the following objective function, which minimizes the error between 

modelled and measured spectra is used as in ([21],[20]) 

𝛿 =
√∑ (𝑟𝑟𝑠(𝜆𝑤)−𝑟𝑟�̂�(𝜆𝑤))

2𝑛
𝑤=1 

∑ 𝑟𝑟𝑠(𝜆𝑤)𝑛
𝑤=1

                    (14) 

where 𝑟𝑟𝑠 represents observed spectra and 𝑟𝑟�̂� represents modelled spectra with n as number 

of wavelengths. 

5. RESULTS AND DISCUSSIONS 

Statistics based on mean squared errors, like r2
 (coefficient of determination), Root Mean 

Square Error (RMSE) and regression slopes are suitable for data with Gaussian distributions 

and not ideal for ocean color algorithm performance assessment owing to limited amount of 

data availability. Hence, we used two statistical measures, bias and mean absolute error (MAE) 

for algorithm performance assessment as suggested by [26] calculated as in Eq.ns 15 and 16.  

The advantages and disadvantages of different metrics are also discussed in [26].  

             Bias = 10 ^ (
∑ 𝑙𝑜𝑔10(𝑀𝑖)−𝑙𝑜𝑔10(𝑂𝑖)𝑛

𝑖=1

𝑛 
)                              (15) 

       MAE = 10 ^ (
∑ |𝑙𝑜𝑔10(𝑀𝑖)−𝑙𝑜𝑔10(𝑂𝑖) |𝑛

𝑖=1 

𝑛
)                    (16) 

Where Mi and Oi are modelled and observed values of parameter, n is number of total 

observations.  

 The two statistics considered are multiplicative metrics and are dimensionless and the 

values given are interpreted as: A multiplicative bias of 0.75 (as in 𝑎𝜙(443) for SAA5v, 

NOMAD6w dataset) indicates that the model is 25% lesser on average than the observed 



variable. The bias values obtained closest to unity indicates least bias and bias less than one 

indicates negative and more than one indicates positive bias.  Multiplicative MAE always 

exceeds unity, and a value of 1.5 indicates relative measurement error of 50%.  

The bias and MAE values obtained for different IOPs using two SAA’s are presented 

in Error! Reference source not found.. The bias values for 𝑎𝜙 and 𝑎𝑑𝑔 are below one, 

implying negative bias for NOMAD 6w dataset. In case of 𝑏𝑏𝑝, positive bias values are 

obtained. For 𝑎𝑡𝑜𝑡, both SAA5v and SAA3V models gave negative bias values. As 𝑏𝑏𝑡𝑜𝑡 is 

sum of 𝑏𝑏𝑝and 𝑏𝑏𝑤, with 𝑏𝑏𝑤 a constant value, the 𝑏𝑏𝑡𝑜𝑡 bias values followed the similar trend 

as in 𝑏𝑏𝑝. From the Error! Reference source not found., it is evident that SAA5v performed 

better than SAA3V for total absorption and backscattering coefficients. In case of metrics for 

individual component absorption and particulate backscattering coefficients, SAA5v 

performed better than SAA3v in case of  𝑎𝜙 and 𝑏𝑏𝑝 but  vice-versa in case of 𝑎𝑑𝑔. This can 

be due to the choice of spectral models. The study further can be extended by using various 

spectral models available in Generalized Inherent Optical Property model (GIOPs) developed 

by [27]. Further, the study needs to be extended to use various optimization algorithms (global 

and local) to verify the results. 

6. CONCLUSIONS 

In the relation between rrs, bulk absorption and backscattering coefficients, the parameter ‘g’ 

is often considered constant. The value of ‘g’ parameter vary with particle phase function and 

scattering properties of the water and is variable in nature. In this study, the parameter ‘g’ is 

taken as variable and is allowed to vary between the limits for deep and coastal water (high 

scattering). Our study shows that by including g0 and g1 as variables will improve the bias and 

MAE values for bulk IOPs retrieved from deep water rrs. With suggested metrics like 

Multiplicative Bias and MAE, the study showed an improvement. Further studies can be 

conducted using other spectral models available for modelling 𝑎𝜙, 𝑎𝑑𝑔and 𝑏𝑏𝑝 to understand 

the performance of proposed SAA5v model. In the processing of satellite imagery to retrieve 

IOPs, the proposed SAA5v model can be tested.  
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Table 1: Number of spectra for NOMAD subset datasets 

IOP NOMAD6w 

𝑎𝜙(443) 327 

𝑎𝑑𝑔(443) 307 

𝑏𝑏𝑝(555) 129 

𝑎𝑡𝑜𝑡(443) 307 

𝑏𝑏𝑡𝑜𝑡(555) 129 

 

Table 2: Bounds used for variables in Particle Swarm Optimization 

 

Parameter (m-1) Minimum 

constraint 

Maximum 

constraint 

𝑎𝜙(443) 0.001 1.5 

𝑎𝑑𝑔(443) 0.001 3 

𝑏𝑏𝑝(555) 0.001 0.02 

 

Table 3: Multiplicative Bias and MAE values obtained for IOPs using SAA5v and SAA3V 

for NOMAD6w dataset 

Dataset Model 𝒂𝝓 

(443) 

𝒂𝒅𝒈 

(443) 
 

𝒃𝒃𝒑 

 (𝟓𝟓𝟓) 

𝒂𝒕𝒐𝒕 

(443) 

 

𝒃𝒃𝒕𝒐𝒕 

(𝟓𝟓𝟓)    

 

 

 

NOMAD6w 

 Multiplicative Bias 

SAA5v 0.79 0.69 1.38 0.79 1.27 

SAA3V 0.64 0.78 1.45 0.77 1.32 

 Multiplicative MAE 

SAA5v 1.71 1.68 1.42 1.40 1.30 

SAA3V 1.91 1.58 1.48 1.42 1.34 

 


