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1 Introduction 
Ocean colour satellite sensors are a practical approach for providing large-scale synoptic monitoring of 

aquatic environments (Simis & Olsson, 2013). For instance, spectral reflectance features are used to retrieve 
bio-optical variables such as chlorophyll concentration (i.e., the direct proxy for phytoplankton biomass) and 
seawater inherent optical properties (IOPs) (Kirk, 1995).  However, this capability is accomplished through the 
determination of water-leaving radiance which is extracted from top of atmosphere (TOA) radiances 
measured by satellite sensors using atmospheric correction algorithms (Müller et al., 2015).  Given that the 
atmospheric signal comprises about 80% or more of the total measurement by satellite sensors at TOA, it 
needs to be removed to isolate the signal from the ocean, for successful retrieval of the biogeochemical 
properties of water bodies (Müller et al., 2015).  Thus, a priori knowledge of the in situ above water 
reflectance of the water body in the absence of an intervening atmosphere can be an effective reference point 
for validation of satellite-derived atmospheric corrected reflectance (Simis & Olsson, 2013).  Reflectance 
measured by above-water radiometers from stationary (Zibordi et al. 2004, 2009) or moving platforms can aid 
the calibration and validation of satellite-derived reflectance  due to increased match-ups. However, 
automated methods to evaluate in situ spectra quality are required before comparison with satellite data. For 
example, precipitation, cloud conditions (Lewis, 2008), shadow and ship superstructure negatively influence 
the measure spectra signals (Hooker & Morel, 2003).  

The objectives of this research were (1) to develop a framework for acquisition, quality control, 
including meteorological flags and superstructure signal, and consider three different approaches for deriving 
above-water remote sensing reflectance acquired with autonomous sensors - SAS Solar Tracker, installed 
aboard the Queen of Oak Bay Ferry, west coast of Canada; and (2) to use SAS-derived Rrs(λ) to validate 
Sentinel-3-atmospherically corrected Rrs(λ) derived from different methods, Polymer 4.8, and C2RCC 0.15. 

2 Approach: data acquisition 
We installed a set of hyperspectral radiometers on a commercial ferry, the BC ferry’s Queen of Oak Bay, 

to measure radiances and irradiance with solar tracking capability that permits autonomous operation (SAS 
Solar Tracker, or Ferry Ocean Colour Observation System, FOCOS). The FOCOS system consists of two 
hyperspectral radiometers to measure sea surface radiance (Lt(λ)), sky radiance (Li(λ)), and a third sensor to 
measure total irradiance (Es(λ)); from these measurements, remote sensing reflectance, Rrs(λ), is derived. 
FOCOS was installed on a white ferry, 19 meters above the water surface, with considerations to avoid 
infrastructure shadows (calculated at approximately 11m from the ship wall at spring/summer time), spray, 
and sun glint. Specifically, Lt(λ) and Li(λ) are at a fixed viewing zenith angle, θv = 50o, and viewing-sun azimuth, 
φv = 120o to avoid the effects of glint (Hooker & Morel, 2003). The ideal φv is maintained using an 
autonomous steeper motor platform that triggers the required positioning according to ship heading and sun 
azimuth (Satlantic Inc).  

The data acquired from the 12:50 to 14:30 ferry run from Departure Bay to Horseshoe Bay during the 
spring and summer of 2016 was selected as it is closest to the satellite overpass. An accompanying ferry box 
system measured salinity, chla, CDOM, and turbidity information at the same time and location. Additionally, a 
benchtop sampling method was used for measuring total and dissolved organic matter absorption, scattering, 
and backscattering with the ac-S meter. Before and after each data collection cruise, the ac-S was calibrated 



using DI water in a laboratory setting to account for any instrument drift (Twardowski et al., 1999). The ac-S 
and BB3 data were further used in the method by Groetsch et al. (2017). 

3 Data processing: approach and results 
Data from FOCOS was processed with our open source application PySciDON (Python Scientific 

framework for Development of Ocean Network applications). PySciDON was designed using a Model-View-
Controller (MVC) design pattern, with a framework for processing large amounts of in situ radiance and 
irradiance data acquired with autonomous sensors aboard ships. PySciDON has multiple levels of processing, 
considering calibration of radiance and irradiance data, flags for erroneous acquisition angles, latitude and 
longitude directional errors, and environmental conditions (sun elevation, clouds, and rain), Rrs(λ) calculation, 
and simulation of Rrs(λ) for specific satellite bands (Vandenberg et al., 2017).  

Meteorological flags: clouds and rain 

For this analysis, approximately 35,000 in situ spectra were measured at different meteorological 
conditions between about 13:00 and 14:30 pm from June 18th to July 13th with the FOCOS system. All the 
measured in situ spectra were averaged every 1 minute, which resulted in about 1,400 averaged spectra. 
Additionally, two cameras were installed on the spectrometer to acquire the images of the sky, and water 
surface and humidity data (acquired with a RM Young Temperature RH 41382VC-L 27306), all at 1-minute 
intervals. Weather conditions were determined based on the evaluation of the sky images, which were 
classified into seven categories: rainy, overcast, variable clouds (merged 100%, 75% and 50% cloudy 
conditions), and sunny (merged 25% cloudy and sunny).  We defined the following meteorological flags, 
adapted from Wernand (2002): 
Flag 1 Es(λ = 480 nm) >2 𝑢 W · cm−2 · nm−1 : selecting significant Es. 
Flag 2 Es(λ=470nm)/Es(λ=680 nm)>1 : masking spectra acquired at dawn/dusk 
Flag 3 Es(λ = 720 nm) / Es(λ = 370 nm) : masking spectra affected by rainfall and high humidity. 
 
Based on the defined classification scheme, the analysis showed that the flags accurately identified rainy 
(97.6% accuracy), overcast (76.4%) and sunny (98.5%) weather conditions, and they were then implemented 
in PySciDON as part of our operational analysis of valid spectra. 

 
Reflectance calculation 
Following the application of meteorological flags and any other inconsistency on data quality, three 

methods were applied to calculate water reflectance based on the measured radiances and irradiance. 

(i). Mobley (1999) (𝑅𝑟𝑠
𝑀99): The remote sensing reflectance is defined as the ratio between water-leaving 

radiance (Lw) and total irradiance (Es): 𝑅𝑟𝑠
𝑀99(𝜆) =

𝐿𝑡(𝜆)−ρ
𝑠

𝐿𝑖(𝜆)

𝐸𝑠(𝜆)
  Equation (1). Where Lt is the measured total 

radiance by the sea viewing sensor corresponding to 𝐿𝑡() = 𝐿𝑤() + 𝜌𝑠𝐿𝑖(); s is the fraction of sky radiance 
that is measured by the sea viewing sensor (Mobley, 1999). Variable illumination and surface roughness 

conditions make the determination of s a challenge.  Sky glint is usually less than 5% of the acquired sky 
radiance (Li) (Morel & Bricaud, 1981).  However, it can have a similar magnitude to Lw, and therefore the 

choice of s significantly influences the accuracy of Rrs calculations.  s was defined considering the local wind 
speed measured at Entrance Island and Halibut Bank, following Mobley (1999). The measured wind speed 

ranged from 0.8 - 10.4 m/s with the corresponding s ranges from 0.035 to 0.048. 

(ii). Mobley (1999) with correction for ship superstructure reflectance (𝑅𝑟𝑠
𝑀99+𝑠ℎ𝑖𝑝): In addition to the accurate 

determination of ρs, the ship superstructure (ship wall) influences the above-water radiometry by introducing 
signal to the radiance field measured by the sea viewing sensor.  To quantify the ship superstructure 
perturbation on the measured radiometry data, measured radiometric data were chosen from the day with 



the lowest water reflectance (implying the lowest turbidity) coinciding with high salinity (implying less 
influence of river plume waters), and as such, we assumed that the infrared reflectance (Rrs(780)) was 
negligible after removing sky glint signal using Mobley, (1999) (Hooker & Morel, 2003). These correspond to 

approximately 940 measurements. We evaluated 𝑅𝑟𝑠
𝑀99 (780) at different rotator angles ( ) and at azimuth 

angles between the heading of the ferry and the position of the sun ( ), to define possible superstructure 
signal (Rship). From this analysis, we defined that the ship wall was always under non-slit conditions, which 
minimizes any superstructure reflection onto the water (Hooker & Morel, 2003), and that data acquired at 

rotator angles lower than - 50 (about 13 m from ship wall) should be removed due to possible measurements 
of shadowed waters (this was confirmed during field observation). Further, there was no indication of 
increased reflectance as the rotator angle approximates the ship wall (from -25 to -470, corresponding to 18 
and 13 m from the ship wall, respectively) (Figure 1a).   

Figure 1b shows the histogram of 𝑅𝑟𝑠
𝑀99( 780) values, with the median value corresponding to 6.1262 [sr-1] 

and a standard deviation value of 0.3538 [sr-1] (after removal of glint and shadow contaminated data). From 
this, the value corresponding to the superstructure reflectance (Rship=𝑅𝑟𝑠

𝑀99 (780)) was defined as the median – 
2 x SD, corresponding to 5.4186 *10-4 [sr-1]. Adapted from preview work by Hooker & Morel (2003), a 
wavelength dependent radiance from a white ship, 𝐿𝑠ℎ𝑖𝑝(𝜆), measured as part of 𝐿𝑡, can be written as 

𝐿𝑠ℎ𝑖𝑝(𝜆) = [𝐿𝑡(780) − ρ
𝑠
𝐿𝑖(780)]

𝐸𝑑(𝜆)

𝐸𝑑(780)
 (Equation 2). Equation (2) can also be written as 𝐿𝑠ℎ𝑖𝑝(𝜆) = 𝑅𝑟𝑠

𝑀99( 780)𝐸𝑑(𝜆) 

(Equation 3). At any wavelength, 𝑅𝑟𝑠(𝜆) can be calculated as 𝑅𝑟𝑠(𝜆) =
𝐿𝑡(𝜆)−ρ

𝑠
𝐿𝑖(𝜆)−𝐿𝑠ℎ𝑖𝑝(𝜆)

𝐸𝑑(𝜆)
  (Equation 4) or 𝑅𝑟𝑠(𝜆) =

𝐿𝑡(𝜆)−ρ
𝑠

𝐿𝑖(𝜆)

𝐸𝑑(𝜆)
− 𝑅𝑟𝑠

𝑀99( 780) (Equation 5).  𝑅𝑟𝑠
𝑀99( 780) is the constant we quantified as the ship contributed 

reflectance ( 𝑅𝑠ℎ𝑖𝑝) base on analysis of the clearest water with the lowest reflectance at 780 nm. Thus, 

Equation 4 can be written as 𝑅𝑟𝑠
𝑀99+𝑠ℎ𝑖𝑝

(𝜆) =
𝐿𝑡(𝜆)−ρ

𝑠
𝐿𝑖(𝜆)

𝐸𝑑(𝜆)
− 𝑅𝑠ℎ𝑖𝑝 (Equation 6), where 𝑅𝑠ℎ𝑖𝑝 = 5.4186 *10-4 [sr-1] for 

our case and should vary for a different ship superstructure environment. 

 

Figure 1: a) 𝑅𝑟𝑠
𝑀99 (780) values for July 06, 2016 and its rotator angle ( ) and ferry heading and sun azimuth angle ( ) 

at the time of measurement. The red dashed line indicates the threshold value for shadow. b) The histogram 𝑅𝑟𝑠
𝑀99(780) 

for the same dataset. The red dashed line indicates the threshold determined to represent superstructure contributed 
reflectance (Rship). 

(iii) 3C approach provided by Groetsch et al., 2017(𝑅𝑟𝑠
3𝐶): 

FOCOS data was also processed with a three-component reflectance model (3C) from Groetsch et al. 
(2017), which estimates a spectrally resolved offset Δ(𝜆) to correct for residual sun and sky glint, applicable to 

above-water measurement, and independent of s. The model is tuned using ac-S measured local 
SCDOM=0.0155, aCDOM with a start value at 0.525 m-1 and range from 0.007 to 3.0 m-1. Backscattering data is also 
provided externally from BB3 measurement.   



Sentinel-3 image processing 

Level 1 Sentinel-3 images were processed with Polymer 4.8, C2RCC 0.15, and the standard ESA Level 2 water 
leaving reflectance products. A total of 15 images with corresponding 750 match ups with FOCOS in situ Rrs 
measured (averaged within 90 seconds) were analyzed. Each in situ Rrs corresponds to a 3x3 Sentinel-3 image 
match up window. After deleting the adjacency contaminated samples and mismatch samples in the boundary 
of ocean and plume water, 358 ocean and 243 plume samples were kept for further analysis.  

4 Sentinel-3 reflectance validation 
Figure 2 shows the relationship between in situ FOCOS 𝑅𝑟𝑠

𝑀99+𝑠ℎ𝑖𝑝 and Sentinel 3-derived Rrs at 560 nm 
according to different processing methods, Polymer v2.8, C2RCC, and standard ESA Level 2. Note that, 
generally, Polymer retrieves Rrs closer to the 1:1 line, while ESA Level 2 performs poorly, including negative Rrs 

values, and C2RCC Rrs saturated at around 0.03 sr-1. This saturation is caused by a large coccolithophore bloom 
on Aug 22 and Aug 23, 2016. After deleting those saturation points, statistical analysis was performed 
considering 358 and 205 ocean (higher salinity) and plume (lower salinity) water samples, respectively.  

 
Figure 2: Matchups of C2RCC v0.15, L2 and Polymer v4.8 processed satellite reflectance at 560 nm with corresponding in 

situ 𝑅𝑟𝑠
𝑀99+𝑠ℎ𝑖𝑝

 for 243 plume water samples. The blue line indicates the 1-to-1 relationship.  

 
The statistical analysis was performed separately for the two groups of waters aiming to identify the improved 
performance of the considered processing methods, Polymer 4.8, C2RCC 0.15, and the standard ESA Level 2. In 
our dataset, ocean waters showed chla 0.5-5 µg/l, turbidity 1.6-8.0 NTU and 5.0-24.0 (coccolithophores 
bloom), and CDOM 1.5-3.0; plume water showed chla 0.6-5.5, turbidity 1.6-7.0 NTU and 4.0-25.0 
(coccolithophores bloom), and CDOM 2.0-6.0. Before the statistical analysis, a detailed investigation regarding 
the match-up quality of the dataset was conducted to guarantee that good matchups correspond to the same 
water mass sampled by FOCOS and Sentinel-3. The Salish Sea is a dynamic water system under the influence 
of a large river plume, the Fraser River, tides and currents.  A dataset, composed of ferrybox biogeochemical 
(chla, CDOM, and turbidity) and CODAR data, allowed for a robust spatiotemporal traceability of the 
uncertainties associated with the quality of matchups in the interface of the Fraser River plume and ocean 
waters. This analysis revealed that the uncertainties of the poor-quality match ups were a function of the local 
current speed and direction and heterogeneity of water masses, adding to large uncertainties between 
Sentinel-derived Rrs and FOCOS-derived Rrs; the poor-quality match ups were removed from further analysis.  
 
Figure 3 shows a summary of the final statistics for the different methods, for ocean and plume waters. For 
the ocean water, the best performance was achieved with Polymer- derived Rrs when compared with in situ 

𝑅𝑟𝑠
𝑀99+𝑠ℎ𝑖𝑝. Correlation coefficients (r) were > 0.9 and the mean absolute percentage difference (MAD) ranged 

from 12-39% (highest deviation always for the 400nm band) for the Sentinel-3 visible bands. The C2RCC 
method showed the second-best performance, especially when compared with the 𝑅𝑟𝑠

3𝐶  (r ranged from 0.7 to 



09; MAD ranged from 20 to 80%). The poorest observed performance was for the standard ESA Level 2 Rrs, 
which exhibited the highest uncertainties for all bands (MAD ranging from 36 to 165%), as a result of the 
poorest correlation across all bands (Figure 3).  Similar results were observed for plume waters, where the 

Polymer showed the best performance, especially when compared with 𝑅𝑟𝑠
𝑀99+𝑠ℎ𝑖𝑝 (r>0.9; MAD range from 11-

30%), and again, the weakest performance was for standard ESA Level 2. 
 

 

Figure 3. Summary of statistical analysis (correlations coefficient, r, and MAP) of match ups between in situ FOCOS Rrs 
and Sentinel-derived Rrs according to different methods.  



5 Conclusions 
Detailed considerations of installation, meteorological flags, ship shadow, and perturbation related to 

superstructure albedo were considered to analyze in situ above-water reflectance data acquired with an 
autonomous solar tracker system installed aboard of a ferry crossing the Salish Sea. The results showed that 
the defined flags were successful for avoiding data acquired during cloudy or rainy conditions. Ship shadow 
was defined as present for rotator angles between -50o and -60o, based on in situ observations and reflectance 
values measured at different rotator angles; data acquired at these angles were removed from the analysis. 
The assumption of null reflectance at 780 nm for our lowest reflectance ocean waters allowed the estimation 
of a ship superstructure albedo, which was subsequently applied to all the in situ reflectance measurements, 
considering the in situ total irradiance.  𝑅𝑠ℎ𝑖𝑝 = 5.4186 *10-4 [sr-1] for our case and should vary for a different 

ship superstructure environment.  
Sentinel-3 processing methods, Polymer, C2RCC, and ESA Level 2, were evaluated (N=590 samples) using 

in situ FOCOS Rrs processed according to (i) wind and geometry related s, (ii) and an additional correction with 

𝑅𝑠ℎ𝑖𝑝, and (iii) a s independent model. Our results support Polymer as the most appropriate method to 

determine accurate Sentinel-3 Rrs, with r >0.9 and MAP ranging for 11-39% for the OLCI visible bands when 
compared to FOCOS Rrs with correction for ship albedo, for both ocean and plume waters.  ESA Level 2 
performed the poorest with a general large underestimation of Rrs values. 
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